Abstract

Precious metal nanoparticles have been widely investigated due to their excellent activity shown in catalysis and sensing. However, how to prepare highly dispersed noble metal nanoparticles to improve the lifetime of catalysts and reduce the cost is still an urgent problem to be solved. In this study, a carbon-based carrier material was prepared by an expansion method and loaded with Pd or Ag nanoparticles on this carbon material to synthesize precious metal nanoparticle composites, which were characterized in detail. The results show that the nanoparticles prepared using this method exhibit superior dispersion. Under the synergistic effect of noble metal nanoparticles and porous carbon carriers, the composites exhibited excellent catalytic degradation of p-nitrophenol and showed excellent sensing performance in the modified hydrogen peroxide sensor electrode. This approach is highly informative for the preparation of nanocomposites in medical and environmental fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.