Abstract
Cu-oxide catalysts have a tendency to deactivate dramatically in reverse water gas shift (RWGS) reaction, because of the aggregation of supported copper particles at high temperatures. Herein, β-Mo2C, which is a typical type of transition-metal carbide, has been demonstrated to be capable of dispersing and stabilizing copper particles. Cu/β-Mo2C catalysts exhibit good catalytic activity and stability for the RWGS reaction. Under relatively high weight hourly space velocity (WHSV = 300 000 mL/g/h), the optimized 1 wt % Cu/β-Mo2C exhibits superior activity over traditional oxide-supported Pt- and Cu-based catalysts. The activity was well-maintained in a 40 h stability test, and the catalyst shows stable reactivity in a six-cycle start-up cool-down experiment. Detailed structure characterizations demonstrate that the strong interaction between Cu and β-Mo2C effectively promotes the dispersion of supported copper and prevents the aggregation of Cu particles, which accounts for the extraordinary activity and s...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.