Abstract

It is highly desirable, but challenging to develop multifunctional electromagnetic wave (EMW) absorbing material for practical applications in some harsh environments. Herein, we successfully embedded highly dispersed Co/Co9S8 nanoparticles into a three-dimensional (3D) honeycomb porous carbon skeleton (the carbon skeleton is derived from longan shell-derived S, N co-doped porous carbon) as a multifunctional material with outstanding EMW absorption properties, hydrophobicity and corrosion resistance. Its superior versatility is attributed to synergistic effects of the S and N dopants, large specific surface area, abundant carbon defects, and 3D porous characteristics. Minimal reflection loss (RLmin) and efficient absorption bandwidth (EAB) of the optimized material as EMW absorbers can achieve −59.9 dB and 6.8 GHz at a thickness of 2.7 mm, respectively, which are superior to most of the reported carbon-based absorbents. Meanwhile, theoretical simulations of the radar scattering cross section (RCS) further confirm that this multifunctional material has outstanding EMW attenuation performance and actual application potential. In addition, the material possesses strong hydrophobicity (124°) and anti-corrosion properties, expanding the scope of potential applications of microwave absorbers. Therefore, this work provides an effective development strategy for the design of anti-corrosion, super-hydrophobic, and high-performance EMW absorbing materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call