Abstract

To satisfy the necessity for elevated data transmission rates in 5G and beyond networks, terahertz band communication (0.1 - 10 THz) is envisaged as a crucial wireless technology. Two-dimensional graphene nanomaterial is being extensively integrated into the plasmonic antennas as it allows them to resonate in the terahertz wave spectrum. In this paper, a graphene-based hybrid terahertz plasmonic nano-scale antenna has been modelled to acquire a maximum gain and directivity of 8.1 dB and 8.23 dBi, respectively, by varying the conductivity of graphene via gate bias voltage. Moreover, a combination of several tailored radiating layers of silver, SiO2 and graphene sheets is arranged in the proposed nanoantenna in such a way that the return loss (S11) of -26.595 dB and a wider bandwidth of 1241.3 GHz are obtained. It is evident that the proposed graphene-based hybrid plasmonic nanoantenna could be considered as an ideal candidate for terahertz communication owing to its excellent radiation characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.