Abstract

Creating plasmonic nanostructures with controllable Fano resonances is of great interest for a number of important applications including metamaterials and biosensors. Realizing double Fano resonances is even more challenging but may become favorable to the applications such as surface enhanced Raman scattering (SERS) and second harmonic generation (SHG). Here we have developed plasmonic metasurfaces consisting of a nanoring array and a metallic film separated by a dielectric spacer for the generation of double Fano resonances. The double Fano resonances are realized by the strong plasmonic coupling between the localized surface plasmon resonance (LSPR) mode of the nanoring array and the cavity modes of the metal-insulator-metal (MIM) structure, and consequently exhibit large electric field enhancements at double frequencies. The resonance wavelength, the linewidth and the wavelength separation of double Fano resonances can be well tailored by changing the cavity length of the structure and the parameters of the top array pattern including the diameter, periodicity, and shape. In addition, we develop a far-field coupling model to efficiently determine the cavity length of metasurface structures with double Fano resonances at specific wavelengths with much ease and acceptable accuracy compared to the time-consuming and computing resource-needed numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call