Abstract

AbstractSophisticated sensing and actuation capabilities of many living organisms in nature have inspired scientists to develop biomimetic somatosensory soft robots. Herein, the design and fabrication of homogeneous and highly conductive hydrogels for bioinspired somatosensory soft actuators are reported. The conductive hydrogels are synthesized by in situ copolymerization of conductive surface‐functionalized MXene/Poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) ink with thermoresponsive poly(N‐isopropylacrylamide) hydrogels. The resulting hydrogels are found to exhibit high conductivity (11.76 S m−1), strain sensitivity (GF of 9.93), broad working strain range (≈560% strain), and high stability after over 300 loading–unloading cycles at 100% strain. Importantly, shape‐programmable somatosensory hydrogel actuators with rapid response, light‐driven remote control, and self‐sensing capability are developed by chemically integrating the conductive hydrogels with a structurally colored polymer. As the proof‐of‐concept illustration, structurally colored hydrogel actuators are applied for devising light‐driven programmable shape‐morphing of an artificial octopus, an artificial fish, and a soft gripper that can simultaneously monitor their own motions via real‐time resistance variation. This work is expected to offer new insights into the design of advanced somatosensory materials with self‐sensing and actuation capabilities, and pave an avenue for the development of soft‐matter‐based self‐regulatory intelligence via built‐in feedback control that is of paramount significance for intelligent soft robotics and automated machines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call