Abstract

In this work, we present a novel hexagonal lattice porous-core photonic crystal fiber (PCF) exhibiting high birefringence, low loss, and near-zero flattened dispersion in the terahertz regime. The core design incorporates asymmetric rectangular and triangular air holes to achieve enhanced birefringence performance. The background material, TOPAS, is carefully selected to minimize dispersion and transmission losses. Furthermore, by employing the finite element method, the guiding properties of the proposed PCF are comprehensively investigated. Our simulation results reveal a near-zero flattened dispersion value of ±0.2ps⋅THz−1⋅cm−1 within a broad frequency range of 0.8−1.6THz, accompanied by an impressive birefringence value of 0.072. Additionally, the PCF demonstrates outstanding characteristics in terms of confinement loss, effective material loss, effective mode area, core power fraction, and bending loss. Considering its exceptional attributes, the proposed PCF holds significant promise for polarization-maintaining applications and terahertz communication systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call