Abstract
Composite nanofiber meshes of well-aligned polyacrylonitrile (PAN)/FeCo nanofibers containing nanoparticles (NPs) were successfully fabricated by a magnetic-field-assisted electrospinning technology, which was confirmed to be a favorable method for the preparation of aligned composite nanofibers in this article. Meanwhile, FeCo NPs, with a particle size of approximately 60 nm, were synthesized using a hydrothermal route. The nanocomposite fibers were prepared by an electrospun solution of PAN containing 0, 2, 4, and 6 wt% NPs. The as-spun nanofibers were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometer. Both the diameters and the degree of alignment of the composite nanofibers decreased with the increase in voltage and increased with the increase in FeCo content. The composite nanofibers exhibited superior ordered performance, with the highest alignment value being 97%. Due to the highly ordered alignment structures, the composite nanofiber meshes showed large anisotropic magnetic property. In particular, the saturation magnetization of the composite nanofiber films in the parallel and perpendicular directions of the fiber axis were 42 emu/g and 19.5 emu/g, respectively. Meanwhile, the remanence also exhibited distinction in different directions (parallel: 2.01 emu/g; perpendicular: 0.86 emu/g).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.