Abstract
We report cryogenic inductively coupled plasma reactive ion etching (ICPRIE) etched tapered silicon microwires are ideal light trapping structures with extremely low (1.08% between 400 nm–1100 nm under normal incidence) reflectivity. We show that these tapered microwire arrays absorb 90.12% of incident light under normal incidence in an effectively 20 μm thick silicon when embedded in a polymer and peeled off the substrate, making them an attractive alternative for achieving high efficiency in thin film crystalline silicon solar cells. We show that microwave photoconductivity decay measurements as a simple quick way to measure carrier lifetimes in etched microwires under various liquid surface passivation techniques to estimate surface recombination velocities. The etched structures demonstrate >1 μs lifetimes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.