Abstract

In this work, we present the implementation of a new method to perform high-frequency thermoreflectance measurements on thin films. The so-called differential broad-band frequency domain thermoreflectance method follows broad-band frequency domain thermoreflectance developed previously [Regner et al., Rev. Sci. Instrum. 84(6), 064901 (2013)], without the use of expensive electro-optic modulators. Two techniques are introduced to recover the thermal phase of interest and to separate it from the unwanted instrumental contributions to the recorded phase. Measuring a differential thermal phase by either varying the spot size or offsetting the pump and probe beams, the thermophysical properties of materials can be extracted. This approach enables the study of nanoscale heat transport where non-equilibrium phenomena are dominating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.