Abstract

In this work, we prepare and characterize FeCo/IrMn–Al2O3 multilayers using magnetron sputtering method with various doping concentrations in order to study the doping effect of the antiferromagnetic layer in exchange-biased films on their high frequency magnetic properties and their thermal stability for fundamental research as well as for application. The influences of the nonmagnetic Al2O3 doping in the antiferromagnetic layers on the high frequency magnetic properties from 1GHz up to 8GHz and their thermal stability of the FeCo/IrMn exchange-biased multilayer have been investigated in the temperature range from room temperature up to 420K. The temperature behavior of exchange bias, static magnetic anisotropy field, dynamic magnetic anisotropy field, rotatable magnetic anisotropy field, resonant frequency and damping of the samples are presented and interpreted by classifying the antiferromagnet grains into random spin grains, frozen spin grains and rotatable spin grains. In particular, the roles and changes of each grain type with the doping amount and with temperature are discussed in conjunction with the variations of the magnetic and microwave parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call