Abstract

Lincoln Laboratory has designed and fabricated a charge-coupled device (CCD) array capable of imaging both polarization and illumination uniformity. The device consists of an 1107-element linear array of UV-optimized silicon photodiodes readout by a three-stage CCD through a single ~1-MHz output amplifier. This yields an effective clock rate for the whole array of ~1 kHz. Each of the active diode surfaces within the 1107-element array is covered by a UV-opaque layer of polysilicon into which are patterned 140-nm, transmissive sampling slits. The orientation and location of the slits enables simultaneous determination of illumination uniformity, degree and direction of polarization, and polarization uniformity. The device is tested with a 193-nm excimer laser equipped with variably polarized illumination and the theoretical performance of the device was supported by finite-difference time domain optical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.