Abstract
The only stable NMR-active isotope of strontium, 87Sr, is a spin-9/2 quadrupolar nucleus that has a low gyromagnetic ratio, a low natural abundance, and a large nuclear electric quadrupole moment. In this work, we utilize the quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) pulse sequence and a 21.14 T NMR spectrometer at the Pacific Northwest National Laboratory to characterize the strontium sites in the natural minerals strontianite (SrCO 3) and celestine (SrSO 4). QCPMG at 21.14 T was found to provide sensitivity enhancements of roughly two orders of magnitude over Hahn-echo experiments at an 11.74 T magnetic field. We extracted the quadrupolar parameters for the strontium nuclei through iterative simulations of the experimental spectra with the SIMPSON program by Bak, Rasmussen, and Nielsen. The data show that the quadrupolar parameters of 87Sr appear to be highly sensitive to the symmetry of the strontium coordination environment and can thus provide information about the strontium binding environment in complex systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.