Abstract

The surface passivation properties of silicon nitride (SiN) films fabricated by high-frequency direct plasma-enhanced chemical vapour deposition (PECVD) on low-resistivity (1 Ω cm) p-type silicon solar cell substrates have been investigated. The process gases used were ammonia and a mixture of silane and nitrogen. In order to find the optimum set of SiN deposition parameters, a large number of carrier lifetime test structures were prepared under different deposition conditions. The optimised deposition parameters resulted in outstandingly low surface recombination velocities (SRVs) below 10 cm/s. Interestingly, we find the lowest SRVs for stoichiometric SiN films, as indicated by a refractive index of 1.9. In former studies similarly low SRVs had only been obtained for silicon-rich SiN films. The fundamentally different passivation behaviour of our SiN films is attributed to the addition of nitrogen to the process gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.