Abstract

Ghost imaging is a quantum optics technique that uses correlations between two beams to reconstruct an image from photons that do not interact with the object being imaged. While pairwise (second-order) correlations are usually used to create the ghost image, higher-order correlations can be utilized to improve the performance. In this Letter, we demonstrate higher-order atomic ghost imaging, using entangled ultracold metastable helium atoms from an s-wave collision halo. We construct higher-order ghost images up to fifth order and show that using higher-order correlations can improve the visibility of the images without impacting the resolution. This is the first demonstration of higher-order ghost imaging with massive particles and the first higher-order ghost imaging protocol of any type using a quantum source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.