Abstract

A higher-order-accurate numerical procedure, developed for solving incompressible Navier?Stokes equations for 2-D or 3-D fluid flow problems and presented in Part I, is validated. The procedure, which is based on low-storage Runge?Kutta schemes for temporal discretization and fourth- and sixth-order compact finite-difference schemes for spatial discretization, is shown to eliminate the odd?even decoupling problem on regular grids, provided that compact schemes are used to approximate the Laplacian of the pressure equation. Spatial and temporal accuracy are confirmed formally through application to several pertinent benchmark problems. Stability in long-time integration is demonstrated by application to the Stuart?s mixing-layer problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.