Abstract

We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdos for the usual Carmichael numbers) that indicates that for every m there should be infinitely many Carmichael numbers of order m. The argument suggests a method for finding examples of higher-order Carmichael numbers; we use the method to provide examples of Carmichael numbers of order 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.