Abstract
A geometric approach is used to study a family of higher-order nonlinear Abel equations. The inverse problem of the Lagrangian dynamics is studied in the particular case of the second-order Abel equation and the existence of two alternative Lagrangian formulations is proved, both Lagrangians being of a non-natural class (neither potential nor kinetic term). These higher-order Abel equations are studied by means of their Darboux polynomials and Jacobi multipliers. In all the cases a family of constants of the motion is explicitly obtained. The general n-dimensional case is also studied.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have