Abstract
We define a higher spin alternating sign matrix to be an integer-entry square matrix in which, for a nonnegative integer $r$, all complete row and column sums are $r$, and all partial row and column sums extending from each end of the row or column are nonnegative. Such matrices correspond to configurations of spin $r/2$ statistical mechanical vertex models with domain-wall boundary conditions. The case $r=1$ gives standard alternating sign matrices, while the case in which all matrix entries are nonnegative gives semimagic squares. We show that the higher spin alternating sign matrices of size $n$ are the integer points of the $r$-th dilate of an integral convex polytope of dimension $(n{-}1)^2$ whose vertices are the standard alternating sign matrices of size $n$. It then follows that, for fixed $n$, these matrices are enumerated by an Ehrhart polynomial in $r$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.