Abstract

The calculus of differential forms can be used to devise a unified description of discrete differential forms of any order and polynomial degree on simplicial meshes in any spatial dimension. A general formula for suitable degrees of freedom is also available. Fundamental properties of nodal interpolation can be established easily. It turns out that higher order spaces, including variants with locally varying polynomial order, emerge from the usual Whitney-forms by local augmentation. This paves the way for an adaptive p-version approach to discrete differential forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.