Abstract

Abstract This work proposes new transmission conditions at the interfaces between the layers of a three-dimensional composite structures. The proposed transmission conditions are obtained by applying the asymptotic expansion technique in the framework of Lagrange-Hamilton's principle. The proposed conditions take into account interfacial effects of higher order, thus representing an extension of the classical zero-thickness interface models. In particular, the (small) thickness of the interface together with its inertia, stiffness and anisotropy are accounted for. The effect of the transmission conditions on the band structure of Bloch–Floquet waves propagating in a one dimensional phononic crystal is discussed based on numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.