Abstract

ABSTRACTIn the present article, a high-order global-local theory with three-dimensional elasticity corrections is employed to trace the local and instantaneous variations of lateral deflections and stress components of sandwich plates with auxetic (negative Poisson ratio) cores under static and dynamic loads. Effects of the auxetecity of the core material on the natural frequencies are evaluated as well. The governing equations are extracted based on Hamilton's principle. The main novelties of the present research in comparison to the available literature and previous researches of the second author of the present paper are: (i) Presenting a higher-order global-local plate theory with a novel equilibrium-based three-dimensional elasticity corrections, (ii) Incorporation of the transverse flexibility of the core; a fact that is crucial when studying behaviors of thick or soft core sandwich plates, (iii) Frequency and dynamic behavior analyses (in addition to the traditional static analysis) of sandwich plates with soft cores by means of the presented accurate global-local theory, and (iv) Investigation of the negative Poisson ratio (auxeticity) effects of the core material on the static (stress) and dynamic responses and natural frequencies. All these items are accomplished here, for the first time. Since the transverse shear stresses are extracted based on the three-dimensional elasticity theory, in contract the traditional constitutive-based theories, the inter-laminar continuity condition of the transverse shear stresses is met. The verification results show that the presented finite element formulation leads to highly accurate results, even for thick or soft core sandwich plates. A comprehensive parametric study is accomplished to evaluate effects of the auxeticity of the core material and transverse compliance of the core on the resulting displacement and stress distributions, natural frequencies, and dynamic responses. Results reveal that auxeticity of the core material decreases the global and relative stresses and lateral deflections of the face sheets and the core compliance may lead to asynchronized movements of the face sheets and strengthen the local bending and extensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.