Abstract

We study the convergence of variationally regularized solutions to linear ill-posed operator equations in Banach spaces as the noise in the right hand side tends to $0$. The rate of this convergence is determined by abstract smoothness conditions on the solution called source conditions. For non-quadratic data fidelity or penalty terms such source conditions are often formulated in the form of variational inequalities. Such variational source conditions (VSCs) as well as other formulations of such conditions in Banach spaces have the disadvantage of yielding only low-order convergence rates. A first step towards higher order VSCs has been taken by Grasmair (2013) who obtained convergence rates up to the saturation of Tikhonov regularization. For even higher order convergence rates, iterated versions of variational regularization have to be considered. In this paper we introduce VSCs of arbitrarily high order which lead to optimal convergence rates in Hilbert spaces. For Bregman iterated variational regularization in Banach spaces with general data fidelity and penalty terms, we derive convergence rates under third order VSC. These results are further discussed for entropy regularization with elliptic pseudodifferential operators where the VSCs are interpreted in terms of Besov spaces and the optimality of the rates can be demonstrated. Our theoretical results are confirmed in numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.