Abstract
BackgroundThe insulin-like growth factor (IGF) system plays an important role in the development and progression of cancer. However, little is known about the expression of the IGF system components and their clinicopathological significance and prognostic value in nasopharyngeal carcinoma (NPC).MethodsIGF system components (IGF-1, IGF-2, IGF-1SR, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4 and IGFBP-6) were quantified from the plasma of NPC patients and healthy individuals using the RayBio Human Cytokine Antibody Array. IGFBP-1 and IGF-1 mRNA levels were quantified by real-time qPCR, and protein expression was detected by western blot in nine NPC cell lines and four immortalized nasopharyngeal epithelial (NPE) cell lines. Tissue-specific expression of IGFBP-1 and IGF-1 was detected by immunohistochemistry in paraffin-embedded NPC tissues. ELISA analysis was used to measure the serum levels of IGFBP-1 and IGF-1 in 142 NPC patients and 128 healthy controls and determine potential correlation with clinicopathological parameters.ResultsSignificantly higher levels of circulating IGFBP-1 and lower levels of IGF-1 and IGF-2 were detected in NPC patients compared to healthy controls by Cytokine Antibody Array analyses (P = 0.034, 0.012, 0.046, respectively). IGFBP-1 expression was detected in the majority of NPC cell lines, but not in NPE cell lines, and was shown to localize to the nucleus of tumour cells, in contrast to the cytoplasmic staining observed in normal cells. Importantly, IGFBP-1 expression was stronger in NPC tumour tissues compared to peritumoural tissues. In contrast, IGF-1 expression was weak or absent in NPC and NPE cell lines, with the exception of the EBV-infected C666 cell line, and was found to be expressed at lower levels in tumour tissues compared to tumour-adjacent normal tissue. Levels of serum IGFBP-1 were shown to be significantly higher in patients with NPCs compared to healthy control individuals (55.23 ± 41.25 μg/L vs. 32.08 ± 29.73 μg/L, P < 0.001), whereas serum levels of IGF-1 were significantly lower in NPC patients compared to healthy controls (98.14 ± 71.48 μg/L vs. 164.01 ± 92.08 μg/L, P = 0.001). Consistently, the IGFBP-1/IGF-1 serum ratio was shown to be significantly higher in NPC patients compared to healthy control individuals (P = 0.002). Serum levels of IGFBP-1 and the IGFBP-1/IGF-1 ratio significantly correlated with age (P = 0.020; P = 0.016), WHO histological classification (P = 0.044; P = 0.048), titre of EA (EB Virus Capsid Antigen-IgA) and NPC (P = 0.015; P = 0.016). In contrast, higher IGFBP-1 serum levels and IGFBP-1/IGF-1 ratio significantly correlated with poor RFS (P = 0.046; P = 0.037) and OS (P = 0.038; P = 0.009). Multivariate analysis revealed that the IGFBP-1/IGF-1 ratio, but not serum IGFBP-1 level, represents an independent risk factor for poor RFS (P = 0.044) and OS (P = 0.035).ConclusionsA higher IGFBP-1/IGF-1 serum ratio is significantly associated with poor prognosis in NPC patients.
Highlights
The insulin-like growth factor (IGF) system plays an important role in the development and progression of cancer
Fourthermore, serum level of IGF-1, IGF-2 and IGFBP-1 were analyzed by ELISA in preliminary experiments (n = 24), there was no significant difference in serum IGF2 level between nasopharyngeal carcinoma (NPC) patients and health group
These results suggest that NPC patients display increased circulating levels of IGFBP-1 and decreased levels of IGF-1
Summary
The insulin-like growth factor (IGF) system plays an important role in the development and progression of cancer. Little is known about the expression of the IGF system components and their clinicopathological significance and prognostic value in nasopharyngeal carcinoma (NPC). Nasopharyngeal carcinoma (NPC) is a malignant head and neck tumour with a distinct racial and geographical distribution that is highly prevalent in Southeast Asia [1]. Finding new biomarkers or risk factors will contribute to earlier diagnosis and better prognosis for NPC patients. The insulin-like growth factor (IGF) system consists of a complex network of ligands (IGF-1 and 2), their cognate receptors (IGFR-1 and 2), IGF-binding proteins (IGFBP1-6), and IGFBP proteases. The IGF signalling pathway, which facilitates communication between cells and their physiologic environment, may be involved in human cancer progression and can be targeted for therapeutic intervention [2]. The interaction between IGFs, IGFBPs and IGFRs promotes cellular proliferation and inhibits apoptosis [3]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have