Abstract

For a pointed topological space $X$, we use an inductive construction of a simplicial resolution of $X$ by wedges of spheres to construct a "higher homotopy structure" for $X$ (in terms of chain complexes of spaces). This structure is then used to define a collection of higher homotopy invariants which suffice to recover $X$ up to weak equivalence. It can also be used to distinguish between different maps $f$ from $X$ to $Y$ which induce the same morphism on homotopy groups $f_*$ from $\pi_* X$ to $\pi_* Y$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.