Abstract
Let Q(X) denote and let BTr denote the classifying space of the r-torus. In [8], Segal showed that Q(BT1) is homotopy equivalent to a product BU × F where BU denotes the classifying space for stable complex vector bundles and F a space with finite homotopy groups. This result has been a very useful one. For example, in [5] it was used to show that up to a stable homotopy equivalence there is only one loop structure on the 3-sphere at each odd prime p. (The subsequent work of Dwyer, Miller, and Wilkerson shows this result is even true unstably, at every prime p.) In [6] it was used to classify, up to homology, the stable self maps of the projective spaces ℂPn and ℍPn. In [5] I asked if a splitting similar to Segal's might exist for Q(BTr) when r≥2. In particular, since the homotopy and homology groups of BU are torsion free it seemed natural to ask if Q(BTr), when r>, could likewise contain a retract with torsion free homology and homotopy groups and whose complement is rationally trivial. The purpose of this note is to show that the answer is no.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.