Abstract

The contribution of higher harmonics to the movement of a dynamic force microscope cantilever interacting with a sample in liquid was investigated. The amplitude of the second harmonic has been found to be an order of magnitude higher in liquid than in air, reflecting an increased sensitivity to local variations in elasticity and interaction geometries. A theoretical model of the tip-sample interactions in liquid was introduced and shown to be consistent with experimental findings. Second harmonic amplitude images were recorded on soft biological samples yielding a lateral resolution of approximately 0.5 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.