Abstract
Higher-group symmetries are combinations of higher-form symmetries which appear in various field theories. In this paper, we explain how higher-group symmetries arise in 10d and 11d supergravities when the latter are coupled to brane sources. Motivated by this observation, we study field theories at zero and finite temperature invariant under a class of continuous Abelian higher-group symmetries. We restrict the analysis to the low-energy regime where the dynamical field content exclusively consists of Goldstone fields arising from the spontaneous breaking of higher-group and spacetime symmetries. Invariant quantities are constructed and the phases of matter are classified according to the pattern of spontaneous symmetry breaking. With respect to supergravity, we highlight how such Goldstone effective theories provide a symmetry-based interpretation for the theories living on D/M-branes. As an explicit example we construct a 6-group invariant action for the bosonic M5 brane, consistent with the self-duality of the 3-form field strength on the brane. While the self-duality condition in the bosonic case needs to be imposed externally as a constraint at zero temperature, we find an equilibrium effective action for the bosonic M5 brane at finite temperature that inherently implements self-duality.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have