Abstract

Recently, directional wave spectra have been obtained by applying the two-dimensional fast Fourier transform (2D FFT) to the three-dimensional spatial topography of ocean surface waves collected by an airborne scanning laser ranging system during a quasi-equilibrium wind wave condition. The directional distributions show that most wave energy at wavenumbers larger than the peak wavenumber is in two sidelobes at directions symmetrically located about the wind direction. Presented in this study is an analysis of the Fourier harmonics derived from decomposition of the measured bimodal directional distributions. The similarity properties of the Fourier coefficients are analyzed. A nonlinear function is proposed to represent the similarity relation. A bimodal directional distribution model in the form of Fourier series expansion consisting of the first eight Fourier harmonics is developed. Application of this model to extend the directional distribution of buoy measurements is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.