Abstract
The Key Performance Indicators of Higher Education Institutions (KPI-HEIs) are a crucial component of the internal quality assurance system that supports the achievement of excellence status for higher education institutions. Many private higher education institutions face challenges in independently analyzing the key performance assessment indicators of Private Higher Education Institutions (PHEIs), which often require complex methodological approaches and specialized expertise. The research aims to cluster PHEIs based on achieving key performance indicators (KPIs). Research the method used descriptive statistical methods and quartile binning techniques to analyze and cluster data based on the achievement of KPI-HEIs. The research results, based on descriptive statistical analysis, identified outliers in eight KPI-HEIs, along with a dominance of zero values in KPI 1, KPI 2, KPI 6, KPI 7, and KPI 8, with the highest proportion reaching 90.91% for KPI 8. Based on these findings, clustering using the quartile binning method resulted in four clusters of PHEIs based on KPIs: Cluster 1 consists of 19 institutions with poor, Cluster 2 consists of 14 institutions with fair achievement, Cluster 3 consists of 16 institutions with good achievement, and Cluster 4 consists of 17 institutions with very good achievement, which can serve as examples for other institutions. This research concludes that the quartile binning method successfully categorized private higher education institutions based on their achievement of KPIs into four clusters: poor, fair, good, and very good. This outcome demonstrates the effectiveness of the method in understanding the performance distribution of these institutions. It provides valuable insights for stakeholders to develop data-driven strategies aimed at enhancing educational quality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have