Abstract

Aim: The main aim of the study proposed is to perform higher classification of fake political news by implementing fake news detectors using machine learning classifiers by comparing their performance. Materials and Methods: By considering two groups such as Decision Tree algorithm and Naive Bayes algorithm. The algorithms have been implemented and tested over a dataset which consists of 44,000 records. Through the programming experiment which is performed using N=10 iterations on each algorithm to identify various scales of fake news and true news classification. Result: After performing the experiment the mean accuracy of 99.6990 by using Decision Tree algorithm and the accuracy of 95.3870 by using Naive Bayes algorithm for fake political news in. There is a statistical significant difference in accuracy for two algorithms is p<0.05 by performing independent samples t-tests. Conclusion: This paper is intended to implement the innovative fake news detection approach on recent Machine Learning Classifiers for prediction of fake political news. By testing the algorithms performance and accuracy on fake political news detection and other issues. The comparison results shows that the Decision Tree algorithm has better performance when compared to Naive Bayes algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.