Abstract

A 2+1-dimensional topological quantum field theory (TQFT) may or may not admit topological (gapped) boundary conditions. A famous necessary, but not sufficient, condition for the existence of a topological boundary condition is that the chiral central charge c_-c− has to vanish. In this paper, we consider conditions associated with ``higher" central charges, which have been introduced recently in the math literature. In terms of these new obstructions, we identify necessary and sufficient conditions for the existence of a topological boundary in the case of bosonic, Abelian TQFTs, providing an alternative to the identification of a Lagrangian subgroup. Our proof relies on general aspects of gauging generalized global symmetries. For non-Abelian TQFTs, we give a geometric way of studying topological boundary conditions, and explain certain necessary conditions given again in terms of the higher central charges. Along the way, we find a curious duality in the partition functions of Abelian TQFTs, which begs for an explanation via the 3d-3d correspondence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.