Abstract

High strength structural steels are susceptible to hydrogen embrittlement. A critical combination of stress, amount of diffusible hydrogen and microstructure is believed to cause cold cracking. Especially during welding of high strength structural steels high tensile residual stresses may develop. Therefore, a feasibility study was conducted using synchrotron X-ray diffraction in order to analyze the stress–strain behavior during tensile loading. For that purpose two types of steel showing different hardening mechanisms were used. On the one hand a thermo-mechanically treated S1100MC and on the other hand a quenched and tempered S1300Q were chosen. The samples were electrochemically charged with hydrogen and subsequently stored in liquid nitrogen to prevent effusion. Tensile tests of the samples were conducted in a special load frame allowing for tilting the samples while applying constant loads. High energy synchrotron radiation was used for energy dispersive X-ray diffraction (EDXRD) analysis in transmission geometry. This method offers the possibility for measuring several diffraction lines of all contributing crystalline phases of the material. Strains as well as stresses applying the sin2ψ-method were determined for varying load situations. This feasibility study shows how the interaction of hydrogen and the stress/strain response may be assessed by diffraction methods. Examples are presented showing that hydrogen alters the load distribution as well as the strain behavior between different lattice planes in high strength steels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.