Abstract
This paper proposes a high-efficiency zero-voltage-switching (ZVS) AC-DC light-emitting-diode (LED) driver. The structure of the proposed converter is based on a buck-boost power-factor-correction (PFC) converter. Through replacement of an output diode with a self-driven synchronous rectifier (SR), the conduction loss decreases significantly, and there is no switching loss because of the ZVS operation of the switching devices. In addition, no additional control circuit is required and cost reduction is achieved because the SR is self-driven. The efficiency of the proposed converter is higher than that of the conventional critical-conduction-mode (CRM) buck-boost PFC converter, owing to the reduced conduction loss of the high-side output rectifier and no switching loss of either of the switches. For verifying the ZVS operation and efficiency improvement of the proposed AC-DC LED driver, theoretical analysis and experimental results of a 48-[V] and 1.4-[A] prototype for LED driver are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.