Abstract

Conventional single-stage light-emitting diode (LED) drivers with a high power factor (PF) contain a significant LED current ripple at twice the ac line frequency, and would require large energy storage capacitors to limit the effect on LED light. Conventional designs and novel control techniques aim to power LED loads with a dc voltage to ensure a limited low-frequency LED current ripple. This paper proposes an average current modulation method that is designed to operate in conjunction with single-stage PF correction (PFC) circuits that contain significant ac voltage ripple, while maintaining zero low-frequency current ripple. This allows the energy storage capacitance of the PFC stage to be reduced, avoiding the need for electrolytic-type capacitors and prolonging the life of the LED driver. The average current modulation circuit requires a single low-voltage MOSFET, a current sense resistor, and a simple control circuit. By requiring no additional magnetic components, the cost of the current modulation circuit is very low and has minimal impact on the efficiency of the overall LED driver. Two experimental prototypes, an 8.75-W system with a buck–boost PFC converter and a 25-W system with a flyback PFC converter, have been built to verify the capability and excellent performance of the proposed driving technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call