Abstract

Many-body interference between indistinguishable particles can give rise to strong correlations rooted in quantum statistics. We study such Hanbury Brown-Twiss-type correlations for number states of ultracold massive fermions. Using deterministically prepared ^{6}Li atoms in optical tweezers, we measure momentum correlations using a single-atom sensitive time-of-flight imaging scheme. The experiment combines on-demand state preparation of highly indistinguishable particles with high-fidelity detection, giving access to two- and three-body correlations in fields of fixed fermionic particle number. We find that pairs of atoms interfere with a contrast close to 80%. We show that second-order density correlations arise from contributions from all two-particle pairs and detect intrinsic third-order correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.