Abstract
Detection of Förster resonance energy transfer (FRET) between fluorescent protein labeled targets is a valuable strategy for measurement of protein-protein interactions and other intracellular processes. Despite the utility of FRET, widespread application of this technique to biological problems and high-throughput screening has been limited by low-contrast measurement strategies that rely on the detection of sensitized emission or photodestruction of the sample. Here we report a FRET detection strategy based on detecting depolarized sensitized emission. In the absence of FRET, we show that fluorescence emission from a donor fluorescent protein is highly polarized. Depolarization of fluorescence emission is observed only in the presence of energy transfer. A simple detection strategy was adapted for fluorescence microscopy using both laser scanning and wide-field approaches. This approach is able to distinguish FRET between linked and unlinked Cerulean and Venus fluorescent proteins in living cells with a larger dynamic range than other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.