Abstract

A novel bandpass filter (BPF) based on spoof surface plasmon polaritons (SSPPs) using a compact folded slotline structure is proposed and experimentally demonstrated. The proposed novel SSPPs structure compared with a conventional plasmonic waveguide with slot line SSPPs unit structure at the same size, the considerable advantages in much lower asymptotic frequency with tight field confinement, which enable the proposed filter to be more miniaturization. A high-efficient mode conversion structure is designed to transition from TE-mode to SSPPs-mode by gradient slotline lengths. The low-frequency stop-band can be committed with microstrip to slotline evolution on both sides of the dielectric, while the high-frequency cutoff band is realized by the proposed SSPPs structure. The influence of dispersion relation, electric field distribution, surface current, and structural parameters on the transmission characteristics of the proposed BPF are analyzed by finite difference time domain (FDTD). To validate the design concept, the prototype of the miniaturized SSPPs BPF has been manufactured and measured. The experimental results show high performance of the fabricated sample, in which the working in a range of 0.9 GHz–5.2 GHz with the relative bandwidth is 142%, the insertion loss less than 0.5 dB, the reflection coefficient less than −10 dB, and the group delay is less than one ns. This works provides a mirror for realizing the miniaturization of waveguides, and the application and development of high-confinement SSPPs functional devices in the microwave and THz regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.