Abstract

With the development of ultrafast electron and X-ray sources it is becoming possible to study structural dynamics with atomic-level spatial and temporal resolution. Because of their short mean free path, electrons are particularly well suited for investigating surfaces and thin films, such as the challenging and important class of membrane proteins. To perform single-shot diffraction experiments on protein crystals, an ultracold electron source was proposed, based on near-threshold photoionization of laser-cooled atoms, which is capable of producing electron pulses of both high intensity and high coherence. Here we show that high coherence electron pulses can be produced by femtosecond photoionization, opening up a new regime of ultrafast structural dynamics experiments. The transverse coherence turns out to be much better than expected on the basis of the large bandwidth of the femtosecond ionization laser pulses. This surprising result can be explained by analysis of classical electron trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.