Abstract

In most test applications, acquisition and analysis involving simultaneous processing of analog and digital signals. However, the bandwidth of most mainstream digital oscilloscopes is limited to 100 MHz, which is unable to meet the testing needs of high-frequency signals in complex electronic systems [1], and therefore, high-bandwidth digital oscilloscopes have emerged. Based on this background, this paper designs a digital oscilloscope hardware platform with high bandwidth by integrating FPGA and ARM technologies, aiming to meet the rigorous testing requirements of modern electronic systems. The FPGA module is based on the xc7s75fgga676 chip, which is mainly responsible for ADC control, data processing and frequency measurement functions. AM5708 is selected as the ARM module to realize the trigger, time base, amplitude and automatic setting functions of the oscilloscope. In order to ensure the accuracy and fidelity of waveform changes, the Sinc function interpolation method is used. This design further improves the acquisition bandwidth and processing speed on the basis of traditional MSO (Mixed Signal Oscilloscope) oscilloscopes, which is of great significance for the acquisition and processing of high-speed signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.