Abstract

Water drops on insulating hydrophobic substrates can generate electric potentials of kilovolts upon sliding for a few centimeters. We show that the drop saturation voltage corresponds to an amplified value of the solid-liquid surface potential at the substrate. The amplification is given by the substrate geometry, the drop and substrate dielectric properties, and the Debye length within the liquid. Next to enabling an easy and low-cost way to measure surface- and zeta- potentials, the high drop voltages have implications for energy harvesting, droplet microfluidics, and electrostatic discharge protection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.