Abstract

As a result of the strict regulations on carbon emissions and the fuel economy, fuel cell electric vehicles (FCEV) vehicles are becoming increasingly popular in the automotive industry. This paper provides the Neural Network Maximum Power Point Tracking (MPPT) controller of the 1.26 kW Proton Exchange Membrane Fuel Cell (PEMFC), which provides electric vehicle powertrain using DC-DC power converters. The proposed neural network controls the MPPT Radial Basis Function Network (RBFN) using the PEMFC Maximum PowerPoint (MPP) tracking algorithm. High frequency switching and high DC-DC converting power are important for FCEV continuity. For maximum power gain, a three-phase power supply interleaved boost converter (IBC) is also designed for the FCEV system. The interleaving process reduces the current input pressure and electrical pressure in semiconductor electrical equipment. FCEV system performance analysis with RBFN based MPPT control compared to fuzzy logic controllers (FLC) on the MATLAB / Simulink platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.