Abstract

While atmospheric cold plasma has successfully inactivated biohazardous proteinaceous molecules (unwanted enzymes, prions, and allergens) and modified proteins with improved functionality, few studies have characterized plasma-protein interactions. This study investigates the physicochemical interactions, structural alteration, and reaction mechanisms of bovine serum albumin (BSA) subjected to high voltage atmospheric cold plasma (HVACP) generated by a dielectric barrier discharge in sealed bags packed with air or modified air (65% O2, 30% N2, 5% CO2). Treating 10 mL of BSA solution (50 mg/mL) with HVACP for 60 min changed the sample from transparent to yellow and induced protein precipitation. HVACP also induced protein unfolding, altered secondary structure (27% loss of α-helix), and increased disorder structure (10% increase of random coil). HVACP-treated protein increased in average size from 10 nm to 113 μm, with a broader size distribution after 60 min of HVACP treatment. SDS-PAGE and mass spectrometry showed the formation of new peptides from 1 to 10 kDa, indicating plasma-triggered peptide bond cleavage. Chemical analysis and mass spectrometry demonstrated oxidation and deamidation in HVACP-treated samples. This study illustrates that interactions between HVACP-induced reactive species and proteins may introduce structural alterations, protein aggregation, peptide cleavage, and side-group modifications to proteins in aqueous conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.