Abstract

High-voltage (900 V) 4H-SiC Schottky diodes terminated with a guard p-n junction were fabricated and studied. The guard p-n junction was formed by room-temperature boron implantation with subsequent high-temperature annealing. Due to transient enhanced boron diffusion during annealing, the depth of the guard p-n junction was equal to about 1.7 μm, which is larger by approximately 1 μm than the projected range of 11 B ions in 4H-SiC. The maximum reverse voltage of fabricated 4H-SiC Schottky diodes is found to be limited by avalanche breakdown of the planar p-n junction; the value of the breakdown voltage (910 V) is close to theoretical estimate in the case of the impurity concentration N = 2.5 × 1015 cm−3 in the n-type layer, thickness of the n-type layer d = 12.5 μm, and depth of the p-n junction rj = 1.7 μm. The on-state diode resistance (3.7 mΩ cm2) is controlled by the resistance of the epitaxial n-type layer. The recovery charge of about 1.3 nC is equal to the charge of majority charge carriers that are swept out of an epitaxial n-type layer under the effect of a reverse voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call