Abstract

The trapped field properties of bulk melt-textured YBCO material were investigated at different temperatures. In the temperature range of liquid nitrogen, maximum trapped fields of 1.1 T were found at 77 K by doping of YBCO with small amounts of zinc. The improved pinning of zinc-doped YBa2Cu3O7−x (YBCO) results in a pronounced peak effect in the field dependence of the critical current density. the trapped field at lower temperatures increases due to the increasing critical current density, however, at temperatures around 50 K cracking of the material is observed which is exposed to considerably tensile stresses due to Lorentz forces. Very high trapped fields up to 14.4 T were achieved at 22.5 K for a YBCO disk pair by the addition of silver improving the tensile strength of YBCO and by using a bandage made of a steel tube. The steel tube produces a compressive stress on YBCO after cooling down from 300 K to the measuring temperature, which is due to the higher coeeficient of thermal expansion of steel compared with that of YBCO in the a,b plane. The application of superconducting permanent magnets with trapped fields of 10 T and more in superconducting bearings would allow to obtain very high levitation pressures up to 2500 N/cm2 which is two orders of magnitude higher than the levitation pressure achievable in superconducting bearings with conventional permanent magnets. The most important problem for the application of superconducting permanent magnets is the magnetizing procedure of the YBCO material. Results of magnetizing YBCO disks by using of pulsed magnetic fields will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.