Abstract
One of the most promising solutions for the future fifth generation communication systems is to utilize millimeter wave (mm-W) radio frequencies. There is, however, little works about Phase Locked Loop (PLL) frequency synthesizer designed for mm-W band frequency for 5G applications. This article discusses integer PLL architecture for frequency synthesis; it targets the highest range of 5G mmW [81–86] GHz using ultra-wide channel spacing of 1 GHz. This work investigates the design of a third passive loop filter for frequency synthesizer using a Phase Frequency Detector and a current switch Charge Pump such as analog devices ADF4155. The critical performance for the Charge Pump depends on the leakage current produced by the technology of its transistors. This undesirable current can have a high impact on the loop stability. However, by optimizing PLL filter parameters, the synthesizer was able to tolerate up to 117 nA. With such a high leakage current, a high performance of the system was achieved. As a result, less than −71 dBc reference spur level at 50 MHz offset frequency was ensured and 3.23 µs settling time for a hopping frequency of 5 GHz was achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.