Abstract
Planets orbiting M-dwarf stars are prime targets in the search for rocky exoplanet atmospheres. The small size of M dwarfs renders their planets exceptional targets for transmission spectroscopy, facilitating atmospheric characterization. However, it remains unknown whether their host stars’ highly variable extreme-UV radiation environments allow atmospheres to persist. With JWST, we have begun to determine whether or not the most favorable rocky worlds orbiting M dwarfs have detectable atmospheres. Here, we present a 2.8–5.2 μm JWST NIRSpec/G395H transmission spectrum of the warm (700 K, 40.3× Earth’s insolation) super-Earth GJ 486b (1.3 R ⊕ and 3.0 M ⊕). The measured spectrum from our two transits of GJ 486b deviates from a flat line at 2.2σ − 3.3σ, based on three independent reductions. Through a combination of forward and retrieval models, we determine that GJ 486b either has a water-rich atmosphere (with the most stringent constraint on the retrieved water abundance of H2O > 10% to 2σ) or the transmission spectrum is contaminated by water present in cool unocculted starspots. We also find that the measured stellar spectrum is best fit by a stellar model with cool starspots and hot faculae. While both retrieval scenarios provide equal quality fits () to our NIRSpec/G395H observations, shorter wavelength observations can break this degeneracy and reveal if GJ 486b sustains a water-rich atmosphere.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have