Abstract
Combinatorial techniques can accelerate the discovery and development of polymeric nanodelivery devices by pairing high-throughput synthesis with rapid materials characterization. Biodegradable polyanhydrides demonstrate tunable release, high cellular internalization, and dose sparing properties when used as nanodelivery devices. This nanoparticle platform shows promising potential for small molecule drug delivery, but the pace of understanding and rational design of these nanomedicines is limited by the low throughput of conventional characterization. This study reports the use of a high-throughput method to synthesize libraries of a newly synthesized, rapidly eroding polyanhydride copolymer based on 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) and sebacic acid (SA) monomers. The high-throughput method enabled efficient screening of copolymer microstructure, revealing weak block-type and alternating architectures. The high-throughput method was adapted to synthesize nanoparticle libraries encapsulating hydrophobic model drugs. Drug release from these nanoparticles was rapid, with a majority of the payload released within 3 days. Drug release was dramatically slowed at acidic pH, which could be useful for oral drug delivery. Rhodamine B (RhoB) release kinetics generally followed patterns of polymer erosion kinetics, while Coomassie brilliant blue (CBB) released the fastest from the slowest degrading polymer chemistry and vice versa. These differences in trends between copolymer chemistry and release kinetics were hypothesized to arise from differences in mixing thermodynamics. A high-throughput method was developed to synthesize polymer-drug film libraries and characterize mixing thermodynamics by melting point depression. Rhodamine B had a negative χ for all copolymers with <30 mol % CPTEG tested, indicating a tendency toward miscibility. By contrast, CBB χ increased, eventually becoming positive near 15:85 CPTEG:SA, with increasing CPTEG content. This indicates an increasing tendency toward phase separation in CPTEG-rich copolymers. These in vitro results screening polymer-drug interactions showed good agreement with in silico predictions from Hansen solubility parameter estimation and were able to explain the observed differences in model drug release trends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.