Abstract
Protein aggregation is involved in many human diseases, but characterizing the sizes and shapes of intermediate oligomers (∼10-100 nm) that are important to the formation of macroscale aggregates like amyloid fibrils is a significant analytical challenge. Here, charge detection mass spectrometry (CDMS) is used to characterize individual conformational states of bovine serum albumin oligomers with up to ∼225 molecules (15 MDa). Elongated, partially folded, and globular conformational families for each oligomer can be readily distinguished based on the extent of charging. The abundances of individual conformers vary with changes in the monomer concentration or by adding aggregation inhibitors, such as SDS, heparin, or MgCl2. These results show the potential of CDMS for investigating intermediate oligomers in protein aggregation processes that are important for understanding aggregate formation and inhibition mechanisms and could accelerate formulation buffer development to prevent the aggregation of biotherapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.