Abstract

Two-dimensional (2D) layered perovskites have emerged as potential alternates to traditional three-dimensional (3D) analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion–Jacobson (DJ) perovskites. In this work, a serious of cycloalkane (CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional (DFT) calculations. We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9–2.1 eV. These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call